

STP Quarterly Review

23 Jan 2013 1QFY13

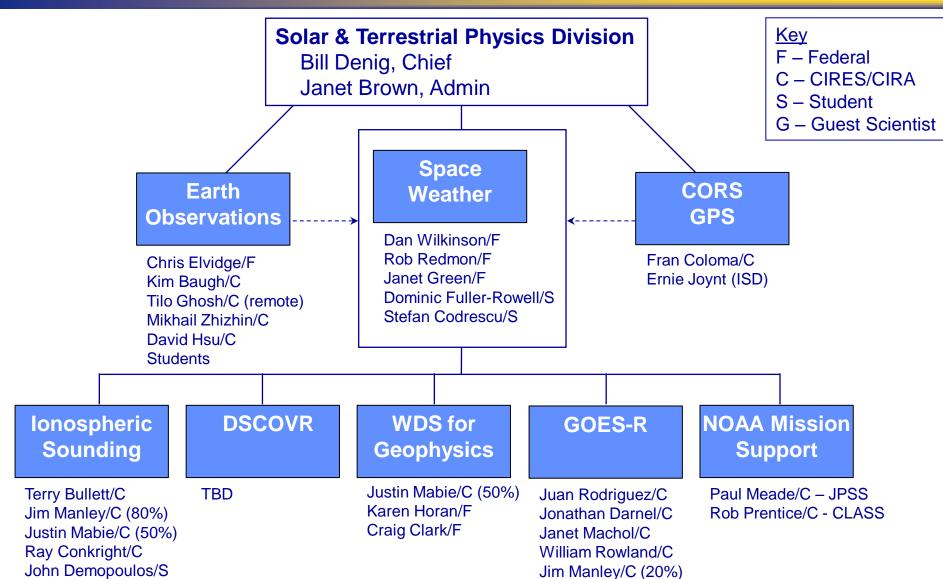
William Denig
Solar & Terrestrial Physics Division
NOAA/NESDIS/NGDC
303 497-6323

William.Denig@noaa.gov

OUTLINE Solar & Terrestrial Physics Division

STP Division Overview

Milestones & Performance Measures


Accomplishments & Updates

Issues & Summary

STP Division Overview Personnel

STP Division Overview Personnel Changes

- Gains
 - John Demopoulos (Student) Ionosonde Program
- Losses
 - Pat Purcell Transferred to NASA/JPSS Program Office
 - Mary Shouldis Searching for new opportunities
- Reassignments
 - Jim Manley supporting GOES-R/Personnel @ 20%
- Inbound
 - None
- Vacancies
 - Space Weather Physicist (Federal) Solar Program/SXI-SUVI
 - Programmer (CIRES) vice Elespuru 50% with MGG (ISD action)
 - GOES-R/DSCOVR Systems Engineer (CIRES/) active search

STP Division OverviewBalance Sheet – FY13 (Estimated)

Income			
	FY12 Carryovers	FY13 Income	Total
Base Allotment (estimate)	•	\$1,200,000	\$1,200,000
NASA ROSAS (Green)		\$113,612	\$113,612
NASA KNIPP (Redmon)		\$20,000	\$20,000
SPSRB (Redmon)		\$64,400	\$64,400
GOES-R (PN76)		\$137,500	\$137,500
GOES-R (PN77)		\$509,620	\$509,620
GOES-R (Cal/Val)		\$300,000	\$300,000
DSCOVR Data Stewardship		\$244,000	\$244,000
OD Program Support		\$242,979	\$242,979
NASIC		\$100,000	\$100,000
JPSS Imagery Team		\$75,000	\$75,000
JPSS Proving Ground		\$145,000	\$145,000
World Bank		\$50,000	\$50,000
NTL Data Sales	\$81,856	\$35,000	\$116,856
McMurdo (DMSP)		\$56,000	\$56,000
CORS		\$208,000	\$208,000
Total Income	\$81,856	\$3,501,111	\$3,582,967
Expenses			
	FY12 Paybacks	FY13 Expenses	Total
Salaries		\$2,611,314	\$2,611,314
Travel		\$41,000	\$41,000
ISD Support		\$216,531	\$216,531
Miscellaneous		\$97,638	\$97,638
OD overhead		\$201,653	\$201,653
FY14 Forward Funded			
Total Expenses		\$3,168,137	\$3,168,137
Balance Sheet			
	Net FY12	Net FY13	Net
Balance Sheet	\$81,856	\$332,974	\$414,830
			As of 04 Jan 13

+ \$3,582,967

- \$3,168,137

Net \$414,830

STP Division Overview

NORR

Agreements – Status

Agreements											
Scope	Team	Туре	Partner	NOAA Legal	DOC Legal	NGDC Signed	Partner Signed	Start	End	Status	
CORS Support	CORS	AGR	NGS	n/a	n/a	Χ	Х	10/01/2003	09/30/2013	G	In place - IC complete
SWx Climatology	SWX	MOU	AFCCC	Χ	Χ	Х	Х	05/27/2004	10/01/2014	G	In place - no FY12 activity
GPS Data (CORS)	SWX	MOA	Multi	n/a	n/a	Х	Х	09/20/2004	TBD	G	Biannual Review - waiting on NGS
DMSP Archive	NTL	MOA	DMSP	Х	Х	Х	Х	05/30/2007	09-30/2009	Υ	Under review
lonosonde Sites	SWX	IA	USGS	Х	Χ	Х	Х	04/03/2009	04/03/2013	G	In place - FY12 site support
ViRBO	SWX	MOA	NASA	Х	Х	Х	Х	04/15/2009	n/a	G	In place - no FY12 activity
SEM-N - AFRL	SWX	MOA	AFRL	Х	Х	Х	Х	05/11/2009	05/11/2014	G	In place - DWSS cancelled
Nighttime Lights	SWX	MOU	DOE	Х	Х	Х	Х	08/12/2009	08/12/2013	G	In place - nothing to report
NASIC	NTL	MOU	NASIC	Х	Χ	Χ	Х	03/09/2011	01/30/2015	G	In place - nothing to report
Gas Flaring	NTL	SA	WBank	Х	Х	Х	Х	05/22/2012	06/30/2013	G	In place - nothing to report
Global CO2	NTL	AGR	NASA	n/a	n/a	n/a	n/a	07/29/2011	09/30/2012	G	To be renewed
SEM-N Algorithms	SEG	MOU	SMC	Х	Х	Х	Х	08/01/2011	07/31/2013	G	In place - DWSS cancelled
											As of 17 Jan 2013
										G Y	No Action Needed
										R	Watch Item Action Required

STP Division Overview

USAF has no stated "requirements" to archive DMSP and/or SWx data (unclassified) – it unlikely that the AF will provide any funding to support this activity. AFW has been informed that this service is now provided on a "best effort" only.

AFWA direct

- DMSP full data stream (SIMPLE format) from Thule and McMurdo; smooth/fine
- NEXION tbd under discussion
- ISOON *tbd* future? (Interim GONG *tbd*)

SEON (SOON & RSTN) Sites via Mail (monthly)

- SOON Sunspot Drawings paper originals now received electronically [TBD]
- RSTN datafiles CD includes:
 - ✓ Metrics Station metrics (up/down time, etc)
 - ✓ RIMS Fixed frequency data 1 sec, up to 8 frequencies
 - √ SRS Swept frequency data
 - √ WNDS Semi-automatic massages generated by the WNDS (operator input)

AFRL (APL & NRL - tbd) - Daily ftp

Processed DMSP SWx sensor data (SSJ/SSIES/SSM; SSUSI/SSULI – tbd)

University of Masachusetts, Lowell

Ionosonde – DIDBase – ionograms in SAO/XML format

Space Weather Prediction Center – various processed datasets

STP Division Overview GOES Spacecraft/Instrument Status

Spacecraft	Series	Operational Status	Status	Magnet1	Magnet2	Magnetometer 1	Magnetometer 2	MAG	XRS	XRS-EUV	EXIS	EPS	НЕРАD	SEISS	XRP	IXS	SUVI
GOES 8	GOES I-M	Decommisioned	R	G	G				G			G	G		G		
GOES 9	GOES I-M	Decommisioned	R	G	G				G			G	G		G		
GOES 10	GOES I-M	Decommisioned	R	G	G				G			Υ	G		G		
GOES 11	GOES I-M	Decommisioned	R	G	G				R			G	G		R		
GOES 12	GOES I-M	South America	G	G	G				R			Υ	G		R	R	
GOES 13	GOES N-O-P	Operational East	G			G	G			Υ		G	G			Υ	
GOES 14	GOES N-O-P	Standby	G			G	G			G		G	G			G	
GOES 15	GOES N-O-P	Operational West	G			G	G			G		G	G			G	
GOES R	GOES R	Acquisition						TBD			TBD			TBD			TBD
GOES S	GOES R	Acquisition						TBD			TBD			TBD			TBD
														As	of: 16	3 Jan	2013
	Oper	ational (or capable of)	G						- T		1 VIII	100	1	Table!	750		
	Operational w ith limitations (or Standby)																
	0										FORT						
		R					i i						TT'	/	1	2007)	
		Status Unknow n	TBD														

Note: SWPC operations use GOES-15 SEM & SXI, GOES-14 SEM & SXI, GOES-13 SEM (no XRS). SWPC stopped processing POES data on 01Jan13 – NGDC still troubleshooting capability to locally generate POES products.

STP Division Overview STP Annual Data Ingest¹ – 1QFY13

	CY10 GB	CY11 GB	CY12 GB
GOES SEM	71	71	80
GOES SXI	870	1,731	1899
POES SEM	30	29	29
DMSP OLS	5,540	5,130	5,020
CORS GPS	20,198	24,456	25,611
Ionosonde	1,400	900	9072

¹Uncompressed data volumes ²Does not include VIPIR (29 TB)

OUTLINESolar & Terrestrial Physics Division

STP Division Overview

Milestones & Performance Measures

Accomplishments & Updates

Issues & Summary

Milestones & Performance Measures 👓

FY13 STP Milestones

FY13 Milestones		+	FY	13	+
Space Weather Program		Q1	Q2	Q3	Q4
Spacecraft Charging	Host technical workshop on the release of the next generation radiation belt models referred to as AP9/AE9 (Green/1QFY13)	С			
PeEPS	Demonstrate at the American Geophysical Union 2012 Fall Meeting new capabilites for the social media utility referred to People Empowered ProductS (Green-Redmon/1QFY13)	С			
DMSP SWx	Develop an 11-year database of calibrated precipitating electron and ion fluxes from the Defense Meteorological Satellite Program Special Sensor Electron and Ion Spectrometer (Redmon/3QFY13)			G	
Vorld Data Service					
Monthly Bulletins	Resume monthly production of the NOAA/NGDC Geomagnetic Indices Bulletin and Solar Indices Bulletin (Mabie-Clark/1QFY13)	С			
onosonde Data Services					
lonosonde Installation	Promote scientific research within Africa by installing a new-generation, advanced research ionospheric sounder at Maseno University on the equator near Kisumu, Kenya (1QFY13/Bullett/1QFY13)	С			
GOES-R Program Support					
GOES-R Cal/Val	Identify and complete key tasks for GOES-R space weather calibration-validation [vice Shouldis/1QFY13]	С			
GOES-R RR/AR	Complete Critical Design Reviews for selected Level 2+ ground-processing algorithms for the GOES-R space weather sensors (vice Shouldis/3QFY13)			G	
OSCOVR Program Support					
DSCOVR RTA	Prepare and submit to the NGDC Data Manager a Request To Archive (RTA) for space environmental data from the NOAA Deep Space Climate Observatory (DSCOVR) mission (TBD/1QFY13)	Υ			
DSCOVR CONOPS	Prepare a high-level CONcept of Operations (CONOPS) for the Archive, Access, and Assessment (AAA) of solar wind data from the Deep Space Climate Observatory (DSCOVR) mission (TBD/1QFY13)	Υ			
DSCOVR SA	Draft an initial Submission Agreement (SA) for acquiring processed Deep Space Climate Observatory (DSCOVR) data received from the NWS Space Weather Prediction Center (TBD/2QFY13)		G		
SPADES	Develop key functional elements of the Satellite Product Analysis and Distribution Enterprise System (SPADES) to support the Deep Space Climarte Observatory (DSCOVR) mission (TBD/3QFY13)			G	
DSCOVR ICD	Prepare a draft Interface Control Document (ICD) for the the NGDC-to-archive interface for the Deep Space Climate Observatory (DSCOVR) mission data (TBD/4QFY13)				G
arth Observations					
VIIRS Gas Flares	Use Soumi National Polar Partnership (S-NPP) Visible Infrared Imaging Radiometer Suite (VIIRS) data to produce a global map of detected gas flares ranked from largest to smallest (Elvidge/4QFY13)				G
VIIRS Nighttime Lights	Create a global cloud-free composite map of nightime lights derived from Soumi National Polar Partnership (S-NPP) Visible Infrared Imaging Radiometer Suite (VIIRS)S data (Elvidge/4QFY13)				G
			As o	f 21 Ja	ın 13

Milestones & Performance Measures

AE9/AP9

Milestone: Host technical workshop on the release of the next generation radiation belt

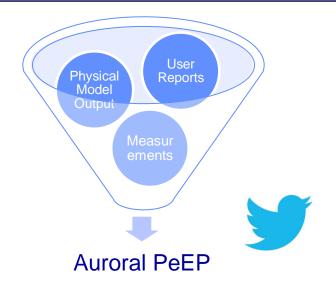
models referred to as AP9/AE9 (Green/1QFY13)

Status: Completed – Meeting held 10 Oct 2012 in conjunction with the International

Organization for Standards (ISO). Meeting involved over 40 participants from

Russia, Japan, England, Italy, France and the U.S. Japan. Meeting host (Kent

Tobiska) complimented NGDC on the "best ever organized ISO meeting."

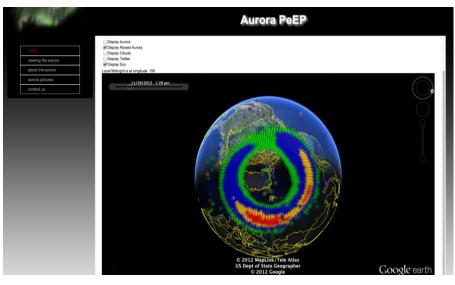

Milestones & Performance Measures 🚥

People Empowered Product (PeEP)

Milestone: Demonstrate at the American Geophysical Union 2012 Fall Meeting new capabilites for the media utility referred to People social Empowered Product (Green-Redmon/1QFY13)

Status:

Completed – Auroral PeEP combines Twitter auroral sightings with Ovation predicted aurora model. Peeps concept presented at Fall AGU. Met with ARC to define auroral PeEP R2O. Currently collaborating with Cornell human factors and ergonomics graduate student to improve visual presentation.

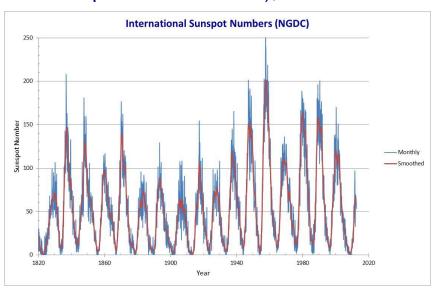


PeEP's: generic framework to incorporate user reports into NOAA real time and retrospective weather products

Wind Map **Example Superstorm** Sandy

Milestones & Performance Measures

GIBs and SIBs


Milestone: Resume monthly production of the NOAA/NGDC Geomagnetic Indices Bulletin

and Solar Indices Bulletin (Mabie-Clark/1QFY13)

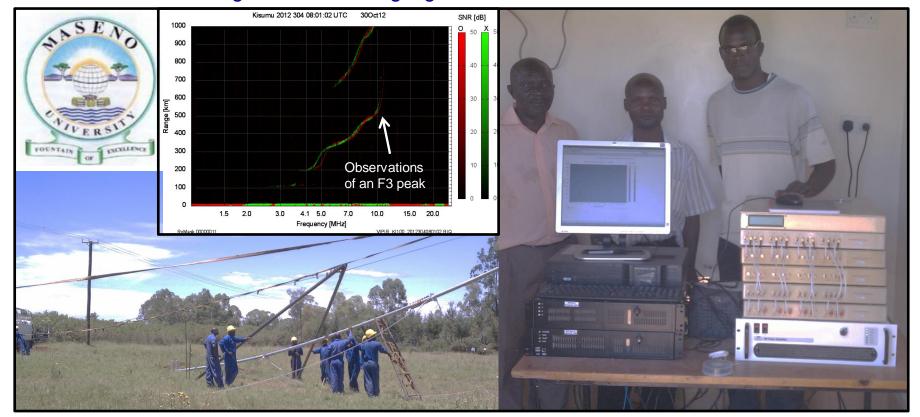
Status: Completed – Monthly of the GIBs and SIBs has now been resumed. Latest SIB is

10/2012 and GIB is 08/2012.

The indices data used for these monthly publications are assembled from a variety of definitive sources. Online access to the indices data remains a popular STP product available through the World Data Service for Geophysics (and the Space Environment), Boulder.

oulde		way	CC	\ I A !	- IN.		-6-		CT.	N.I						
IE G			20	LAI	r ini	DICE	: 5 E	SULI	LEII	IN					ОСТО	BER 201
asured nbinati					ophysic		Cente	er					Sol		strial Physic	
m elect					ay, E/G									Telep	hone: 303	-497-613
fields i			Boul	der, CC	80305	-3328										
in field			• S	OLAR F	ADIO EN	NISSION	S				frequen	ev interval	One sola	r flux unit ea	uals 10 ⁻²² J/m ²	Hzsec Durin
ide the			The qu	iet Sun en	nits radio er	nergy with	a slowly				periods	of low sol	ar activity.	the flux nev	er falls to zero, l	because the Su
ce.			chrome	nuxes, v	thich stem d low in th	e corona,	tmospheri change gri	c layers idually fro	high in m day-to-d	the lay,					it the presence rred on Novemb	
main			in resp	onse to the	number as daily mea	nd size of	pot group	s on the so	olar disk.	Гће	that da	y the obse	rved noon	value drop	ped to 62.6 un	
gnetos	phere,	wher	selecte	d waveler	igths between	een about	1 and 1	00 centim	eters. Ma	any				rred on Apri		
newhat	like	a com			ord quiet-s hem to with						The pre	"Series	C" values	nd <u>adjusted</u> reported b	Penticton fluxes by Canada's D	tabulated her ominion Radi
ır wind			gain, I	oursts in p	rogress, at	mospheric	absorptio	n, and sky	y backgrou	and	Astroph	ysical Ob	servatory i	in Penticton,	British Colum	bia. Observe
th radi			temper	ature. At	2800 meg Sun's disk	gahertz (10 have been	.7 centim made con	eters) flux tinuously s	observati ince Febru	ons arv					in fluctuations a distance. Adjus	
st sola	r wine	d parti	1947.								this va	riation ren	noved; the	y show the	energy receive Gaps in the P	d at the mea
d lines	guide	charg			LUX TAE						(PALE)	, data refl	ect equipe	nent problen	is. Fluxes mea	sured either
					rentheses regahertz.						Sagamo for free	re Hill, M	assachuset which man	ts, or at San v Palehua va	Vito, Italy, wil lues are missing	l be substitute
	Day		measu	re of ene	rgy receive	ed per un	it time,	er unit a	rea, per t	ınit		atilities an		,	ines me imponig	
Cal 1	Year 214	Bart 13			CTOBER	2012 PRE	LIMINAF						LUX		SEP 2012 F	
2	215	14		Sunspot	Obs Flux Pentic	RSTN	RSTN	Solar Flu RSTN	x Adjusted Pentic	to 1 Astro	nomical U RSTN	Jnit RSTN	RSTN	RSTN	Observed Pentic	Adjusted Pentic
3	216	15 16	Day	Inti	(2800)	(15400)	(8800)	(4995)	(2800)	(2695)	(1415)	(610)	(410)	(245)	(2800)	(2800)
5	218	17	01	54 51	128	593	296	156	128	123 112	106	70 65	46 42	20	145.6 142.3	148.2 144.7
6	219	18	03	44	112	515	280	143	113	109	90	60	42	19	141.6	144
7	220	19	04	43 42	110	495 584	268 278	137	110	106	87 85	59 60	40 39	19	137.6	139.9 134.9
8	221	20 21	10000	2000			877777			0.00000	10.000 m		1070	2000	2,565,0	********
10	223	22	06	30 28	99	573 576	283	130	99 98	94 96	79 78	56 56	38	18 17	128 133.4	130 135.4
11	224	23	08 09	34	103	577	275	134	103	99	82	55	37	15	128.6	130.5
12	225	24	10	49 53	106 112	568 474	290 268	139 140	106 112	102	82 84	54 52	37	17 12	123 111.3	124.8 112.8
13	226	25 26	11	51	117	579	267	137	117	107	87	55	37	18	105.1	106.4
15	228	27	12	58	122	529	278	142	122	113	91	57	38	19	102.6	103.8
16	229	1	13	56 66	125	583 483	273	142	125 132	118	94	59 59	38	19 22	99.1 100.5	100.3
17	230	2	15	83	137	581	286	152	137	128	107	61	41	44	97.5	98.6
18	231	3	16	80	137	595	283	149	137	130	113	60	41	37	97.3	98.3
20	233	5	17	71	135	600	299	157	135	127	108	66	41	30	101.5	102.5
21	234	6	18 19	76 66	138 141	596 575	289	154 158	138	130 138	118	66 66	46	27	104.3 109.8	105.3 110.8
22	235	7	20	51	151	598	302	163	151	141	127	69	45	26	117.4	118.4
23 24	236 237	8	21	57	144	600	303	162	144	137	120	67	48	25	116.9	117.8
25	238	10	22	59	156	599	304	165	156	136	119	67	46	23	124.5	125.3
26	239	-11	23 24	64 66	142 136	597 588	300 298	166 160	142 136	133	118	76 73	45 44	22 35	133.6 136.6	134.4 137.4
27	240	12	25	55	130	588	290	154	130	123	106	73	51	34	139.8	140.6
28 29	241	13 14	26	54	131	580	290	156	131	126	109	73	42	24	139.2	139.9
30	243	15	27	47	122	574	288	150	122	114	100	62	38	36	133.2	133.8
31 Mean	244	16	28 29	37 48	117	566 521	284 273	154 139	117	114	94 87	65 62	47 43	33 17	137.8 136	138.3 136.4
prelimi	nary		30	45	106	575	275	137	106	99	86	62	38	19	135.6	135.9
			31 Mean	35 53.3	104	568 568	270 285	134	104	98 116	99	63	35 41	19	123	124.3
			101												8	

GEOMAGNETIC INDICES BUILLETIN


Milestone: Promote scientific research within Africa by installing a new-generation, advanced

research ionospheric sounder at Maseno University on the equator near Kisumu,

Kenya (1QFY13/Bullett/1QFY13)

Status: Completed – New sounder at Maseno University is up and operating (26 Oct 12).

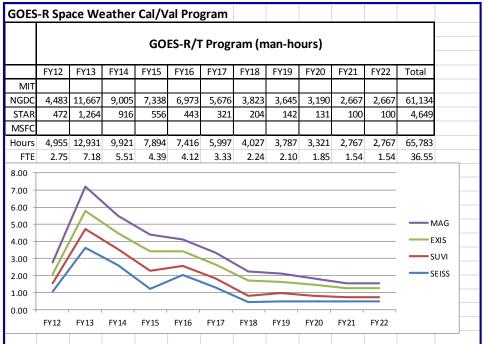
Still working some remaining logistical COMM issues.

Milestones & Performance Measures

GOES-R Cal/Val

Milestone: Identify and complete key tasks for

GOES-R space weather calibration-


validation [vice Shouldis /1QFY13])

Status: Completed – Initial Cal/Val

Execution Plan submitted; non-

executable as is; disconnects being

addressed at the Program Level.

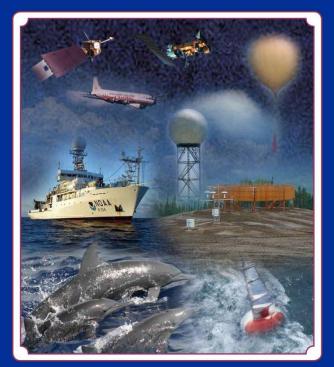
Effective Date: 02/14/11 Expiration Date: 02/014/16 Responsible Organization: GOES R Program/Code 417 P417-R-PLN-0101 Version 2.0

GOES-R Series Calibration/Validation Plan Volume 1: Level 1b Data

April 2012

U.S. Department of Commerce (DOC)
National Oceanic and Atmospheric Administration (NOAA)
NOAA Environmental Satellite, Data, and Information Service (NESDIS)
National Aeronautics and Space Administration (NASA)

THIS DOCUMENT IS SUBJECT TO ITAR CONTROL, AND MAY CONTAIN INFORMATION PROPRIETARY TO GOES-R VENDORS.


Check the VSDE at $\underline{https://goesv3.ndc.nasa.gov} \ to \ verify \ correct \ version \ prior \ to \ use$

Milestones & Performance Measures 🚥 **DSCOVR RTA**

NOAA PROCEDURE FOR SCIENTIFIC RECORDS APPRAISAL AND ARCHIVE APPROVAL

Milestone: Prepare and submit to the NGDC

Data Manager a Request To Archive (RTA) for space environmental data from the NOAA Deep Space Climate Observatory (DSCOVR) mission

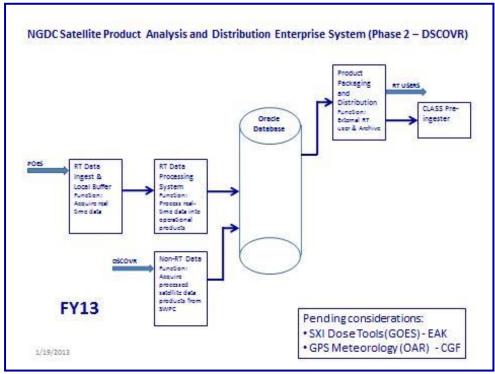
(TBD/1QFY13)

Status: <u>In process</u> – Initial draft prepared;

waiting annual funding. Interfaces still

in flux.

Milestone: Prepare a high-level CONcept of Operations (CONOPS) for the Archive, Access,


and Assessment (AAA) of solar wind data from the Deep Space Climate

Observatory (DSCOVR) mission (TBD/1QFY13)

Status: In process – Initial team meetings help to scope this 3QFY13 effort by the Agile

S/W Development Team. DSCOVR is scheduled for a 1QFY15 launch.

Recommend SPADES infrastructure development for CIO FY14 passback?

1QFY13 PMR – 23 Jan 2013

Milestones & Performance Measures Programme Measures

FY13 Performance Measures

STP Annual Performance	Measures						
Space Weather Metric							
Goal	Objective	Performance Measure	POC	1QFY13	2QFY13	3QFY13	4QFY13
NWS) Eficient Economy Through Environmental Information		Maintain a greater than 97% (2-sigma, cumulative distribution) of available Space Environment Monitor (SEM) data from the Geostationary Operational Environmental Satellites (GOES) archived on an annual basis	Wilkinson	100%			
Ionosonde							
Goal	Objective	Performance Measure	POC	1QFY13	2QFY13	3QFY13	4QFY13
Weather-Ready Nation (NWS)	Resilient Coastal Communities That Can Adapt To The Impacts Of Hazards And Climate Change	Acquire, process and disseminate > 97% (2-sigma, cumulative distribution) of available real-time ionosonde data within 1 hour [TBD] of receipt	Bullett	100%			
Nightime Lights Metric							
Goal	Objective	Performance Measure	POC	1QFY13	2QFY13	3QFY13	4QFY13
Climate Adaptation and Mitigation (CS)	Improved Scientific Understanding of the Changing Climate System and Its Impacts	Acquire, process and disseminate >97% (2-sigma, cumulative distribution) of available real-time nighttime lights imagery within 3 hours of receipt	Elvidge	100%			
CORS							
Goal	Objective	Performance Measure	POC	1QFY13	2QFY13	3QFY13	4QFY13
Resilient Coastal Communities and Economics (NOS)	Resilient Coastal Communities That Can Adapt To The Impacts Of Hazards And Climate Change	Provide a >97% (2-sigma, cumulative distribution) availability for CORS near-real-time data to the NWS Space Weather Prediction Center (SWPC) as per the '4-way' Memorandum of Agreement and subject to normal business-hour response times.	Coloma	100%			
						As	of 22 Jan 13

Greater than 99% (3-sigma) Cumulative Distribution

Greater than 97% (2-sigma) Cumulative Distribution

OUTLINESolar & Terrestrial Physics Division

STP Division Overview

Milestones & Performance Measures

Accomplishments & Updates Issues & Summary

Accomplishments & Updates NGDC in the News

The night side of our planet twinkles with light, and the first thing to stand out is the cities. "Nothing tells us more about the spread of humans across the Earth than city lights," asserts Chris Elvidge, a NOAA scientist who has studied them for 20 years.

O5 December 2012

Everything Is Illuminated

Image courtesy NASA Earth Observatory/NOAA NGDC

Patterns of population density emerge in this composite image of the United States released by NASA on Wednesday, part of a global composite image captured from space by a NASA and National Oceanic and Atmospheric Administration (NOAA) satellite.

The cloud-free images show the glow of natural and artificial light in what a NASA press release calls the most detailed night images yet.

The images were unveiled during the American Geophysical Union conference in San Francisco.

Published December 5, 2012

Accomplishments & Updates NASA Group Achievement Award

National Aeronautics and Space Administration

Presents the

Group Achievement Award

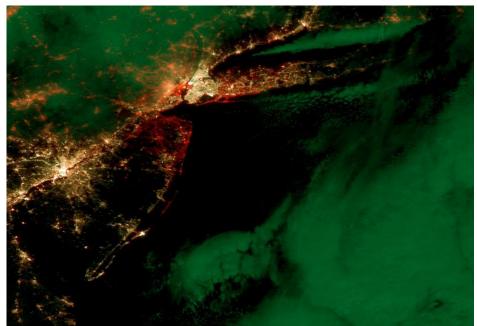
to

Joint Polar Satellite System Transition Team

For dedicated efforts and perseverance of the Joint Polar Satellite System Transition Team in enabling the advancement of the Nation's Earth system science.

Bill Denig

Signed and Sealed at Washington, DC this second day of August Two Thousand Twelve


Administrator, NASA

Accomplishments & Updates Hurricane Sandy Power Outages

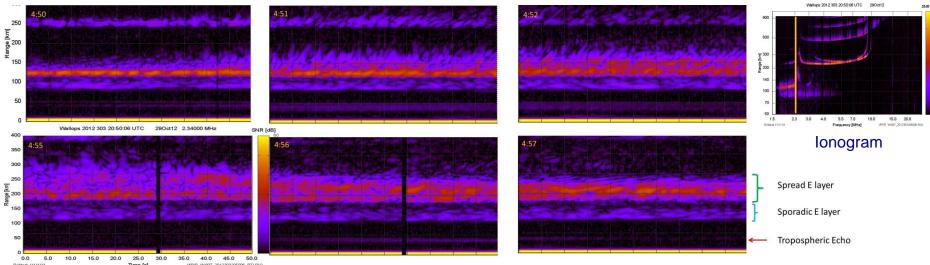
Color-composite image from the VIIRS day/night band (DNB) data reveals the locations along the Atlantic seaboard experiencing with power outages on the morning of November 1. In the color composite, areas where lighting was not detected are red and partial outages are shown as orange compared to the golden color for normal lighting conditions. Clouds in the image appear as green. Note that clouds are obscuring lights in many areas, but the central area damaged by Sandy are largely free of clouds. In New York State power outages were detected in Lower Manhattan, Staten Island, and Long Island. In New Jersey power outages were detected in Hudson, Middlesex, Monmouth, and Ocean Counties.

VIIRS DNB Image: 01 Nov 12 Power Outage Product

Image: CBS/AP

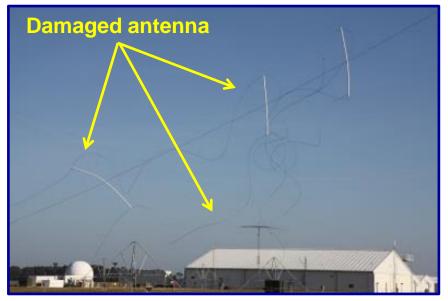
1QFY13 PMR - 23 Jan 2013

POC: Chris Elvidge



Accomplishments & Updates Hurricane Sandy: VIPIR Observations

The Wallops Island VIPIR observed an ionospheric irregularity possibly associated with hurricane Sandy. The 10-minute data sequence below shows a possible gravity wave associated with a strong storm band propagating through the observation region at 20:55 UT on 29 Oct 12. These data represent the highest-ever temporal and spatial resolution ionosonde observation of a hurricane-induced ionospheric disturbance compared to the "traditional" 15-minute ionosonde sounding interval.



Accomplishments & <u>Updates</u> Hurricane Sandy: Wallops Damage

Hurricane Sandy "walloped" the Wallops Island <u>digisonde</u> antenna

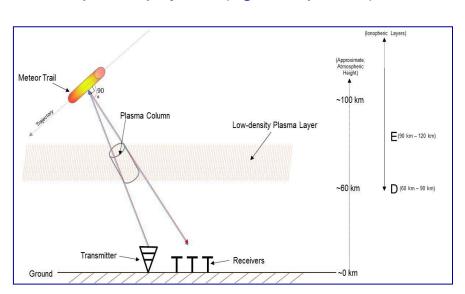
 4 or 6 transmit elements were badly damaged (photo at left)

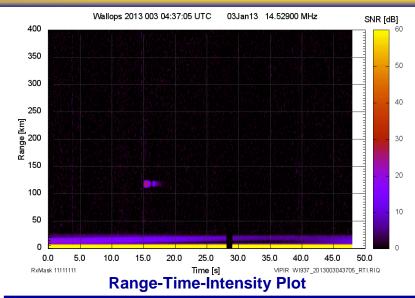
Repair trip allowed inspection of recent VIPIR sounder upgrades which were undamaged by the storm

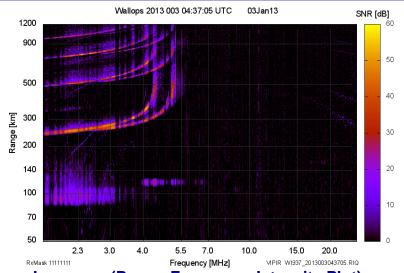
 Continuous VIPIR measurements obtained during Super-storm Sandy (next slide)

Wallops Island digisonde repair activities

1QFY13 PMR – 23 Jan 2013 POC: Justin Mabie 25

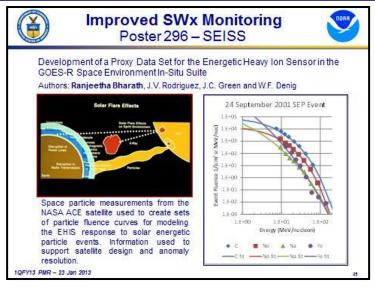


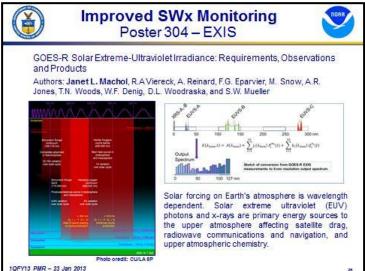

Accomplishments & Updates VIPIR Observation – Meteor Trail

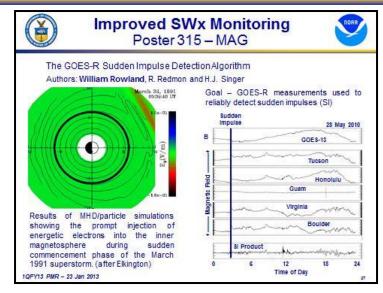


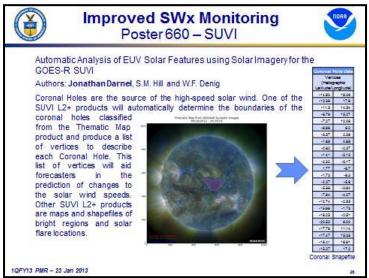
This is not your father's ionosonde!

The Vertical Incidence Pulsed Ionospheric Radar (VIPIR) can be used to identify meteor trails within its field of view. On 03.Jan the VIPIR detected a short duration ionization trail, lasting for only a few seconds and at a range of 120 km. The advanced capabilities of the VIPIR can be exploited to reveal new insights in upper atmospheric physics ("ignorosphere").

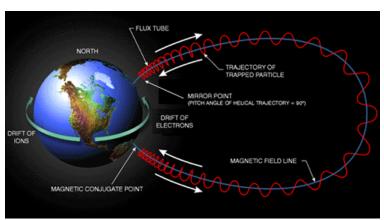

Ionogram (Range-Frequency-Intensity Plot)

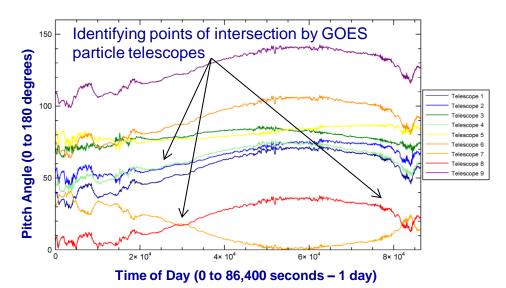

POC: John Demopoulos

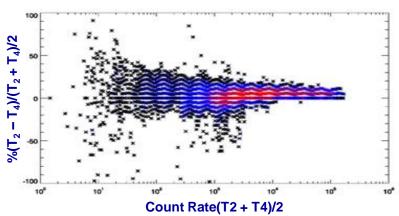



Accomplishments & <u>Updates</u> AMS: GOES-R Technical Posters

Accomplishments & Updates Inter-calibrating Particle Sensors

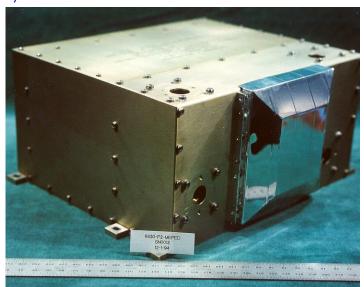


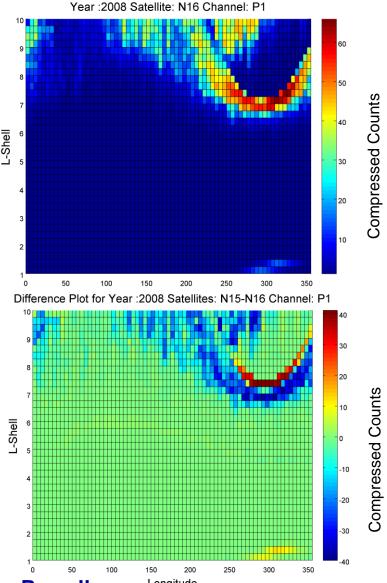

Paper: Intracalibration of particle detectors on a three-axis stabilized geostationary platform, W. Rowland and R.S. Weigel, Space Weather, 10, S11002, doi:10.1029/2012SW000816.


<u>Background:</u> Intracalibration of particle telescopes on non-spinning satellites is problematic.

<u>Technique:</u> Compare instrument response for distinct telescopes measuring particles within the same first adiabatic invariant; i.e. sampling the same pitch angle

Relevance: Technique to be used to calibrate GOES energetic particle sensors as a part of GOES-R Cal-Val [TBD]


Accomplishments & Updates Improving POES Data Quality



<u>Goal</u> – Determine trending errors in POES particle data products due to satellite sensor degradation.

<u>Technique</u> – Use an asynchronous regression analysis (i.e. yearly statistics) to quantify instrument differences between POES satellites over time.

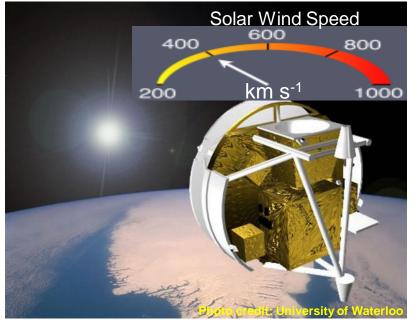
<u>Benefit</u> – Provide the research community with a meaningful method by which to appropriately correct, trust and use the POES dataset.

POC: Dominic Fuller-Rowell

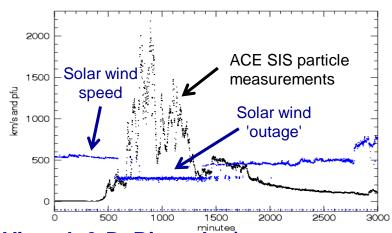
Accomplishments & Updates ACE Solar Wind Speeds

Background: ACE satellite provides real time solar wind speeds used by SWPC as a monitor of space weather and as an input for real-time models

<u>Technique:</u> Real-time solar wind speeds determined from ion-energy distributions measurements from the SWEPAM instrument


<u>Issue:</u> When energetic ions saturate SWEPAM, ACE gives false solar wind readings

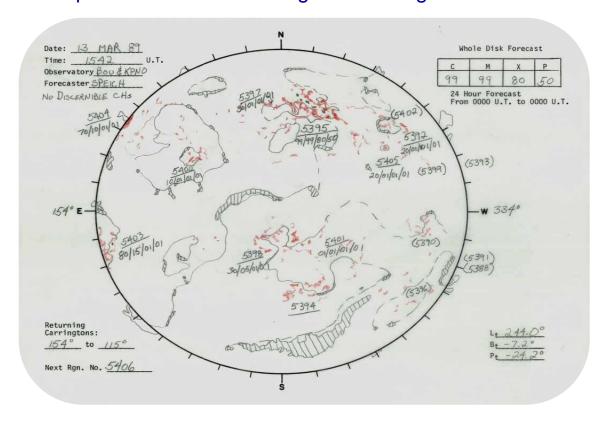
Solution:

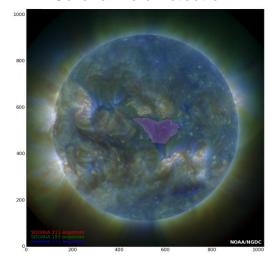

- 1. Identify these outages based on solar wind speeds and ion measurements from SIS instrument
- 2. Use time-based proxy for wind speed for during outages
 - a) for outages <30 hrs, use initial wind speed
 - b) for outages >30 hrs, use function $v = \sqrt{a + b Kp}$; variables a & b [TBD]

Status: Undergoing validation – submit to the Space Weather Journal, if appropriate.

SWEPAM – Solar Wind Electron Proton Alpha Monitor SIS – Solar Isotope Monitor

Advanced Composition Explorer (ACE)




Accomplishments & <u>Updates</u> SWPC Synoptic Analysis Drawings

Synoptic Analysis Drawings, also known as Neutral line (NL) drawings, are drawn each day by SWPC forecasters. These drawings provide a comprehensive view of the sun describing key solar features of interest such as magnetic neutral lines, coronal hole boundaries, active regions, plage, filaments and prominences. Also included is specific information about the coronal hole polarity, active region numbers, flare probabilities for each region and the proton event probabilities for each region. Drawings are available online from 1972 to present.

Coronal Hole Detection

Future – Automatic classification techniques for solar regions is being developed under the GOES-R support program (Jon Darnel).

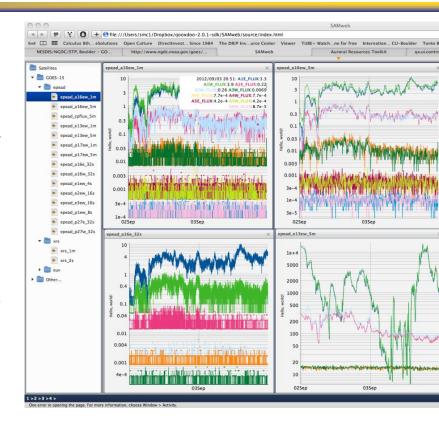
POC: Karen Horan

Accomplishments & <u>Updates</u> Satellite Anomaly Information Services (SAIS)

SAIS Data Portal

- Provides select data view for anomaly analysis
- Allows users to manipulate data display within their web browser
- Following standard web app development procedures per ARC discussion

Anomaly Environmental Assessments


- GRAIL MoonKAM (Moon Knowledge Acquired by Middle school students)
 - o Sally Ride science website says failure cause by "solar flare"
 - Colorado Astronomical Society Public Relations Lead wants to use anomaly as an educational tool on space weather hazards
 - No clear connection to space weather yet
- NPP CrIS entered safe mode on Jan 17th
 - Still under evaluation
- Orbital: Helping evaluate possible satellite vulnerabilities

NEW Product: SEAESRT

- · SWPC expects operations in March
- NGDC to archive ASCII output for display in SAIS portal

ART – Auroral Resources Toolkit

SPIDR - Space Physics Interactive Data Resource

Powered by ART / SPIDR

POC: Stefan Codrescu/Janet Green

OUTLINESolar & Terrestrial Physics Division

STP Division Overview

Milestones & Performance Measures

Accomplishments & Updates

Issues & SummarySTP CY12 Publications – 12

Publications (CY12):

- Allen, J. H., C. A. Clark, W. F. Denig and D. C. Wilkinson (2012), Historical Upper Atmosphere Geophysics Reports Now Available Online, Space Weather, 10, S05007, doi:10.1029/2012SW000802.
- .Araujo-Pradere, E.A., D. Buresova, **D.J. Fuller-Rowell**, and T.J. Fuller-Rowell (2012), Initial results of the evaluation of IRI hmF2 performance for minima 22-23 and 23-24, *Adv. Space Res., in press.*
- Denig, W.F. (2012), Space Weather Products for NOAA Satellites, Earth System Monitor, 19, pp.9.
- Elvidge, C. D., K.E. Baugh, S.J. Anderson, P.C. Sutton and T. Ghosh (2012), The Night Light Development Index (NLDI): a spatially explicit measure of human development from satellite data, Soc. Geogr., 7, 23-35, doi:10.5194/sg-7-23-2012.
- Green, J. (2012)., Space Weather Ready, Earth System Monitor, 19, pp.3.
- **Machol, J.L.**, **J.C. Green**, **R.J. Redmon**, R.A. Viereck and P.T. Newell (2012), Evaluation of OVATION Prime as a Forecast Model for Visible Aurorae, *Space Weather*, *10*, S03005, doi:10.1029/2011SW000746.
- **Redmon, R.J.** (2012), Upwelling to Outflowing Oxygen Ions at Auroral Latitudes during Quiet Times: Exploiting a New Satellite Database, PhD Thesis, University of Colorado, Boulder, CO.
- **Redmon, R.J.**, W.K. Peterson, L. Andersson and **W.F. Denig** (2012), A global comparison of O⁺ upward flows at 850 km and outflow rates at 6000 km during nonstorm times, *J. Geophys. Res.*, 117, A04213, doi:10.1029/2011JA017390.
- **Redmon, R.J.,** W.K. Peterson, L. Andersson, P.G. Richards (2012), Dawnward shift of the dayside O+ outflow distribution: The importance of field line history in O+ escape from the ionosphere, J. Geophys. Res., http://dx.doi.org/10.1029/2012JA018145.
- **Rodriguez, J.V.** (2012), Undulations in MeV solar energetic particle fluxes in Earth's magnetosphere associated with substorm magnetic field reconfigurations, *J. Geophys. Res.*, 117, A06229, doi:10.1029/2012JA017618.
- **Rodriguez**, **J.V.**, H.C. Carlson Jr., and R.A. Heelis (2012), Auroral forms that extend equatorward from the persistent midday aurora during geomagnetically quiet periods, *Journal of Atmospheric and Solar-Terrestrial Physics*, 86, 6–24.
- **Rowland, W.,** and R.S. Weigel (2012), Intracalibration of particle detectors on a Three-axis Stabilized Geostationary Platform, Space Weather, 10, S11002, doi:10.1029/2012SW000816.

Issues & Summary STP FY13 Presentations – 28 (1 of 3)

YTD Presentations (FY13):

High Energy Particle Precipitation into the Atmosphere (HEPPA) - 09-11 October 2012, Boulder, CO

- Update on the NOAA Polar Satellite Program, Data, and Products (Poster), **J. Machol**, **J. Green**, **W. Denig**, T. Sotirelis, **D. Wilkinson**, **J. Rodriguez** and **R. Redmon**

Extreme Ultraviolet Variability Experiment (EVE) Science Meeting - 31 October -1 November 2012, Yosemite Valley, CA

- The Use of EVE Data at NOAA (Invited Oral), J. Machol

Conference on Space Environment Applications, Systems, and Operations for National Security (SEASONS), 14-16 November 2012, Laurel, MD

- NOAA Satellite Anomaly Program (Oral), J.C. Green (Paper presented by G. Fish)

American Geophysical Union, 03-07 December 2012, San Francisco, CA

- Intracalibration of Particle Detectors on a Three-Axis Stabilized Geostationary Platform (Poster), **W. Rowland**, and R. Weigel, (Paper: SM31B-2304)
- New NOAA resources for safeguarding the satellite infrastructure from space weather (Poster), J.C. Green; W.F. Denig; J.V. Rodriguez;
 R.J. Redmon; T.G. Onsager, H.J. Singer, W. Murtagh, R. Rutledge, J. Stankiewicz, J. Kunches and D.C. Wilkinson (Paper: SM23B-2316)
- NOAA People Empowered Products (PeEP): Combining social media with scientific models to provide eye-witness confirmed products (Oral), S. Codrescu, J.C. Green, R.J. Redmon, W.F. Denig and E.A. Kihn (Paper: IN23F-02) (Paper presented by J. Rodriguez)
- Non-standard Space Weather Products and Services from NOAA (Oral), W.F. Denig and R.A. Viereck (Paper: IN31D-03)
- Dawnward shift of the dayside O+ outflow distribution and the Influence of e- precipitation on ion upwelling in the nightside auroral zone (Poster), **R.J. Redmo**n, L. Andersson, W.K. Peterson and P.G. Richards (Paper: SM41B-2215)
- GOES Observations of Pitch Angle Evolution During an Electron Radiation Belt Dropout (Poster), D.P. Hartley, M.H. Denton, **J.C. Green**, T.G. Onsager, **J.V. Rodriguez** and H.J. Singer (Paper: SM31C-234)
- Numerical Simulations of the Ring Current During Geomagnetic Storms (Invited Oral) M.W. Chen, C.Lemon, T.B. Guild, M. Schulz; J.L. Roeder; A.Lui, A.M. Keesee, J.Goldstein, G. Le and **J.V. Rodriguez** (Paper: SM32A-03)

ftp://ftp.ngdc.noaa.gov/STP/publications/stp_presentations/stp_presentations.pdf

1QFY13 PMR – 23 Jan 2013

Issues & Summary STP FY13 Presentations – 29 (2 of 3)

YTD Presentations (continued):

American Geophysical Union, 03-07 December 2012, San Francisco, CA (continued)

- Pulsating Aurora: the Equatorial Source Population & Local Morphological Interplay with Diffuse Aurora (Poster), A.N. Jaynes, M. Lessard, **J.V. Rodriguez**, K.M. Rychert, E. Donovan, R.G. Michell and M. Samara (Paper: SM43B-2240)
- Comparison of Geomagnetically-shielded Solar Energetic Proton Fluxes Observed at Geostationary Orbit by GOES and in Low-earth Orbit by SAMPEX, POES and MetOp (Poster), J.V. Rodriguez, J.E. Mazur, J.C. Green and J.L. Machol (Paper: SH33C-2243)
- Real-time mapping of combustion sources using Suomi NPP satellite VIIRS and CrIMSS data (Poster), M Zhizhin, C. Elvidge, K. Baugh and F.C. Hsu (Paper: IN33C-1553)

American Meteorological Society, 06-10 January 2013, Austin, TX

- The GOES-R Sudden Impulse Detection Algorithm (Poster), W. Rowland, R. Redmon and H.J. Singer (Paper 315)
- GOES-R solar extreme-ultraviolet irradiance: requirements, observations, and products (Poster), **J.L. Machol**, R.A. Viereck, A. Reinard, F.G. Eparvier, M.Snow, A.R. Jones, T.N. Woods, **W.F. Denig**, D.L. Woodraska and S. W. Mueller (Paper 304)
- Development of a Proxy Data Set for the Energetic Heavy Ion Sensor (EHIS) in the GOES-R Space Environment In-Situ Suite (Poster), R.
 Bharath, J.V. Rodriguez, J.C. Green and W.F. Denig (Paper 296)
- Improved Space Weather Monitoring for GOES-R (Invited Oral), W.F. Denig and S.M. Hill (Paper J2.4)
- Automatic Analysis of EUV Solar Features using Solar Imagery for the GOES-R SUVI (Poster), J.M. Darnel, S.M. Hill and W.F. Denig (Paper 660)

Asia Pacific Advanced Netword (APAN), 13-18 January 2013, Honolulu, HI

- What is so great about nighttime VIIRS data for the detection and characterization of combustion sources? (Oral), C. Elvidge
- Using the short-wave infrared for nocturnal detection of combustion sources in VIIRS data (Oral), M. Zhizhin
- Estimating temperature and total radiant output for combustion sources detected at night in VIIRS data (Oral), Feng-Chi Hsu
- Ranking gas flares based on radiant output (Oral), K. Baugh
- Why VIIRS data are superior to DMSP for mapping nocturnal lighting (Oral), C. Elvidge
- A stray filter for improving the quality of VIIRS low light imaging data (Oral), M. Zhizhin
- The NGDC VIIRS reprojection toolkit (Oral), M. Zhizhin
- A VIIRS cloud detection system optimized for cloud-free compositing (Oral), Feng-Chi Hsu
- VIIRS cloud-free compositing for nighttime lights (Oral), K. Baugh

Issues & Summary STP FY13 Presentations – 29 (3 of 3)

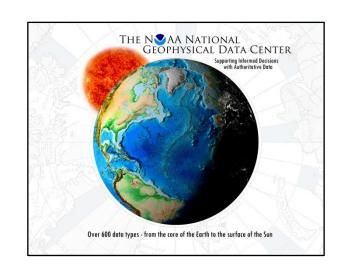
37

YTD Presentations (continued):

Earth-Sun System Exploration 5 - January 13-19, Kona, HI

- Creation and analysis of a novel auroral dataset derived from DMSP satellite observations (Poster), **J.V. Mills**, **R.J. Redmon**, W. K. Peterson, L. Andersson and **W.F. Denig**.
- Dynamic auroral boundaries and ion energization: Solar cycle 23 (Oral, Invited), **R.J. Redmon**, W.K. Peterson, L. Andersson, P.G. Richards, **W.F. Denig** and **J. Mills**.

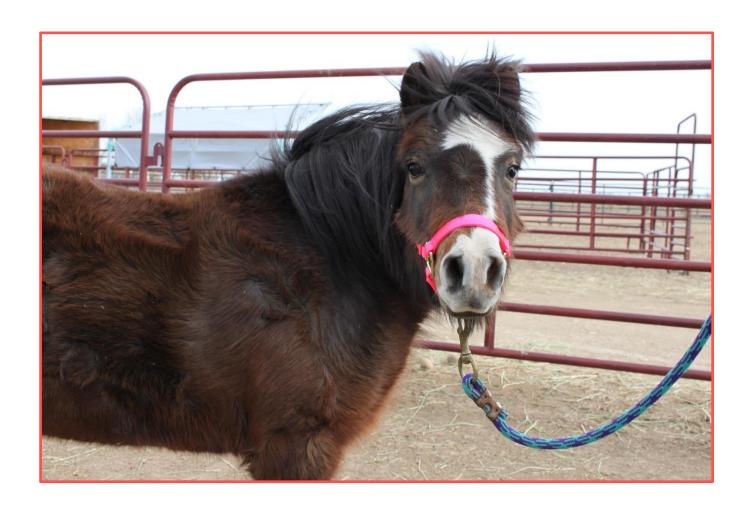
Issues & Summary Solar & Terrestrial Physics Division


- ✓ Federal travel restrictions limit program growth (4QFY12) active
- ✓ Fed hiring restrictions having mission impact (3QFY12) active
- ✓ GOES-R L2+ SWx algorithms (3QFY11) stalled (no action)

Metrics

Papers Published (CY12 Final): 12

Presentations (FY13 YTD): 29


Indices Bulletins: 1

QUESTIONS?

1QFY13 PMR – 23 Jan 2013